
Package: rhosa (via r-universe)
August 21, 2024

Title Higher-Order Spectral Analysis

Date 2024-05-17

Version 0.3.0

Description Higher-order spectra or polyspectra of time series, such
as bispectrum and bicoherence, have been investigated in
abundant literature and applied to problems of signal detection
in a wide range of fields. This package aims to provide a
simple API to estimate and analyze them. The current
implementation is based on Brillinger and Irizarry (1998)
<doi:10.1016/S0165-1684(97)00217-X> for estimating bispectrum
or bicoherence, Lii and Helland (1981)
<doi:10.1145/355958.355961> for cross-bispectrum, and Kim and
Powers (1979) <doi:10.1109/TPS.1979.4317207> for
cross-bicoherence.

License GPL-3

Encoding UTF-8

URL https://tabe.github.io/rhosa/

BugReports https://github.com/tabe/rhosa/issues

RoxygenNote 7.3.1

Imports parallel

Suggests ggplot2, knitr, rmarkdown, testthat (>= 2.1.0)

VignetteBuilder knitr

Repository https://tabe.r-universe.dev

RemoteUrl https://github.com/tabe/rhosa

RemoteRef HEAD

RemoteSha 3bd02ae4549a3465c6ba47f66e5546b8539cbc45

1

https://doi.org/10.1016/S0165-1684(97)00217-X
https://doi.org/10.1145/355958.355961
https://doi.org/10.1109/TPS.1979.4317207
https://tabe.github.io/rhosa/
https://github.com/tabe/rhosa/issues

2 bicoherence

Contents
bicoherence . 2
biperiodogram . 3
bispectrum . 4
cross_bicoherence . 6
cross_bispectrum . 7
kim_and_powers_model . 8
mode_matching . 9
three_channel_model . 10

Index 12

bicoherence Estimate bicoherence from given time series data.

Description

Estimate magnitude-squared bicoherence from given real- or complex-valued time series data.

Usage

bicoherence(
data,
window_function = NULL,
mc = FALSE,
mc_cores = getOption("mc.cores", 2L),
alpha = 0.05,
p_adjust_method = "BH"

)

Arguments

data Given time series, as a data frame or matrix with which columns correspond to
sampled stretches.

window_function

A window function’s name for tapering. Defaults to NULL ("no tapering").
Currently the following window functions are available: Hamming window
("hamming"), Hann window ("hann"), and Blackman window ("blackman").

mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.

mc_cores The number of cores in use for parallel computation, passed parallel::mcmapply()
etc. as mc.cores.

alpha The alpha level of the hypotesis test. Defaults to 0.05.
p_adjust_method

The correction method for p-values, given to p.adjust(). Defaults to "BH"
(Benjamini and Hochberg). No correction if a non-character is given.

biperiodogram 3

Value

A data frame including the following columns:

f1: The first elements of frequency pairs.

f2: The second elements of frequency pairs.

value: The estimate of magnitude-squared bicoherence at the respective frequency pair.

p_value: The (corrected, if requested) p-value for hypothesis testing under null hypothesis that
bicoherence is 0.

significance: TRUE if the null hypothesis of the above hypothesis test is rejected with given alpha
level.

References

Brillinger, D.R. and Irizarry, R.A. "An investigation of the second- and higher-order spectra of
music." Signal Processing, Volume 65, Issue 2, 30 March 1998, Pages 161-179.

Examples

f <- function(x) {
sin(2 * x) + sin(3 * x + 1) + sin(2 * x) * sin(3 * x + 1)

}
v <- sapply(seq_len(1280), f) + rnorm(1280)
m <- matrix(v, nrow = 128)
bc1 <- bicoherence(m)
bc2 <- bicoherence(m, "hamming")
bc3 <- bicoherence(m, "hann", mc = TRUE, mc_cores = 1L)

biperiodogram Calculate biperiodogram

Description

Calculate the biperiodogram of real-valued time series

Usage

biperiodogram(
x,
dft_given = FALSE,
mc = FALSE,
mc_cores = getOption("mc.cores", 2L)

)

4 bispectrum

Arguments

x Given time series (or its DFT), as a data frame or matrix with which columns
correspond to sampled stretches

dft_given If TRUE, suppose that DFTs are given instead of time series data and skip the
fast fourier transform. Default: FALSE.

mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.

mc_cores The number of cores in use for parallel computation, passed parallel::mcmapply()
etc. as mc.cores.

Value

A list with names

f1: The first elements of frequency pairs.

f2: The second elements of frequency pairs.

value: The biperiodogram as a matrix. Each of its rows is for a frequency pair; its columns corre-
spond to stretches.

References

Hinich, M.J., 1994. Higher order cumulants and cumulant spectra. Circuits Systems and Signal
Process 13, 391–402. doi:10.1007/BF01183737

Examples

f <- function(x) {
sin(2 * x) + sin(3 * x + 1) + sin(2 * x) * sin(3 * x + 1)

}
v <- sapply(seq_len(1280), f) + rnorm(1280)
m <- matrix(v, nrow = 128)
bp <- biperiodogram(m)

m2 <- stats::mvfft(m)
bp2 <- biperiodogram(m2, dft_given = TRUE)

bispectrum Estimate bispectrum from time series data.

Description

Estimate bispectrum from real- or complex-valued time series data.

bispectrum 5

Usage

bispectrum(
data,
window_function = NULL,
mc = FALSE,
mc_cores = getOption("mc.cores", 2L)

)

Arguments

data Given time series, as a data frame or matrix with which columns correspond to
sampled stretches.

window_function

A window function’s name for tapering. Defaults to NULL ("no tapering").
Currently the following window functions are available: Hamming window
("hamming"), Hann window ("hann"), and Blackman window ("blackman").

mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.

mc_cores The number of cores in use for parallel computation, passed parallel::mcmapply()
etc. as mc.cores.

Value

A data frame including the following columns:

f1: The first elements of frequency pairs.

f2: The second elements of frequency pairs.

value: The estimated bispectrum at each frequency pair.

References

Brillinger, D.R. and Irizarry, R.A. "An investigation of the second- and higher-order spectra of
music." Signal Processing, Volume 65, Issue 2, 30 March 1998, Pages 161-179.

Examples

f <- function(x) {
sin(2 * x) + sin(3 * x + 1) + sin(2 * x) * sin(3 * x + 1)

}
v <- sapply(seq_len(1280), f) + rnorm(1280)
m <- matrix(v, nrow = 128)
bs1 <- bispectrum(m)
bs2 <- bispectrum(m, "hamming")
bs3 <- bispectrum(m, "blackman", mc = TRUE, mc_cores = 1L)

6 cross_bicoherence

cross_bicoherence Estimate cross-bicoherence from time series data.

Description

Estimate cross-bicoherence from three real-valued time series data.

Usage

cross_bicoherence(
x,
y,
z = y,
dft_given = FALSE,
mc = FALSE,
mc_cores = getOption("mc.cores", 2L)

)

Arguments

x Given 1st time series, as a data frame or matrix with which columns correspond
to sampled stretches.

y Given 2nd time series, with the same dimension as x.

z Optional 3rd time series, with the same dimension as x (and thus as y). If omit-
ted, y is used instead.

dft_given If TRUE, suppose that DFTs are given instead of time series data and skip the
fast fourier transform. Default: FALSE.

mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.

mc_cores The number of cores in use for parallel computation, passed parallel::mclapply()
etc. as mc.cores.

Value

A data frame including the following columns:

f1: The first elements of frequency pairs.

f2: The second elements of frequency pairs.

value: The estimated value of magnitude-squared cross-bicoherence at the respective frequency
pair.

References

Kim, Y.C., Powers, E.J., 1979. Digital Bispectral Analysis and Its Applications to Nonlinear Wave
Interactions. IEEE Trans. Plasma Sci. 7, 120–131. https://doi.org/10.1109/TPS.1979.4317207

cross_bispectrum 7

Examples

x <- seq_len(1280)
v1 <- sapply(x, function(x) {sin(2 * x)}) + rnorm(1280)
v2 <- sapply(x, function(x) {sin(3 * x + 1)}) + rnorm(1280)
v3 <- sapply(x, function(x) {cos(2 * x) * cos(3 * x + 1)}) + rnorm(1280)
m1 <- matrix(v1, nrow = 128)
m2 <- matrix(v2, nrow = 128)
m3 <- matrix(v3, nrow = 128)
xbc1 <- cross_bicoherence(m1, m2, m3)

d1 <- stats::mvfft(m1)
d2 <- stats::mvfft(m2)
d3 <- stats::mvfft(m3)
xbc2 <- cross_bicoherence(d1, d2, d3, dft_given = TRUE)

xbc3 <- cross_bicoherence(d1, d2, d3, dft_given = TRUE, mc = TRUE, mc_cores = 1L)

cross_bispectrum Estimate cross-bispectrum from time series data.

Description

Estimate cross-bispectrum from three real-valued time series data.

Usage

cross_bispectrum(
x,
y,
z = y,
dft_given = FALSE,
mc = FALSE,
mc_cores = getOption("mc.cores", 2L)

)

Arguments

x Given 1st time series, as a data frame or matrix with which columns correspond
to sampled stretches.

y Given 2nd time series, with the same dimension as x.
z Optional 3rd time series, with the same dimension as x (and thus as y). If omit-

ted, y is used instead.
dft_given If TRUE, suppose that DFTs are given instead of time series data and skip the

fast fourier transform. Default: FALSE.
mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.
mc_cores The number of cores in use for parallel computation, passed parallel::mclapply()

etc. as mc.cores.

8 kim_and_powers_model

Value

A data frame including the following columns:

f1: The first elements of frequency pairs.
f2: The second elements of frequency pairs.
value: The estimated cross-bispectrum at each frequency pair.

References

K. S. Lii and K. N. Helland. 1981. Cross-Bispectrum Computation and Variance Estimation. ACM
Trans. Math. Softw. 7, 3 (September 1981), 284–294. DOI:https://doi.org/10.1145/355958.355961

Examples

x <- seq_len(1280)
v1 <- sapply(x, function(x) {sin(2 * x)}) + rnorm(1280)
v2 <- sapply(x, function(x) {sin(3 * x + 1)}) + rnorm(1280)
v3 <- sapply(x, function(x) {cos(2 * x) * cos(3 * x + 1)}) + rnorm(1280)
m1 <- matrix(v1, nrow = 128)
m2 <- matrix(v2, nrow = 128)
m3 <- matrix(v3, nrow = 128)
xbs1 <- cross_bispectrum(m1, m2, m3)

d1 <- stats::mvfft(m1)
d2 <- stats::mvfft(m2)
d3 <- stats::mvfft(m3)
xbs2 <- cross_bispectrum(d1, d2, d3, dft_given = TRUE)

xbs3 <- cross_bispectrum(d1, d2, d3, dft_given = TRUE, mc = TRUE, mc_cores = 1L)

kim_and_powers_model A test signal of the phase coherence between three oscillators

Description

Generate test signals which involve three oscillators described in Kim and Powers (1979).

Usage

kim_and_powers_model(
fbfN = 0.22,
fcfN = 0.375,
fdfN = fbfN + fcfN,
num_points = 128,
num_records = 64,
noise_sd = 0.1,
phase_coherence = TRUE,
product_term = FALSE

)

mode_matching 9

Arguments

fbfN b’s frequency divided by the Nyquist frequency; 0.220 by default.

fcfN c’s frequency divided by the Nyquist frequency; 0.375 by default.

fdfN d’s frequency divided by the Nyquist frequency; fbfN + fcfN by default.

num_points The number of sampling points in a record; 128 by default.

num_records The number of records; 64 by default.

noise_sd The standard deviation of a Gaussian noise perturbing samples; 0.1 (-20dB) by
default.

phase_coherence

If TRUE (default), the phase coherence in the signal d is on; otherwise off.

product_term If TRUE, the product of b and c is included in the model; FALSE by default.

Details

This function produces a list of numeric vectors; its each element represents a test signal in which
three oscillators b, c, and d are superimposed. The ratio of the frequency of b (f1) to the Nyquist
frequency is 0.220 and the ratio of the frequency of c (f2) to the Nyquist frequency is 0.375, by
default. The d’s frequency f3 is equal to f1 + f2 unless specified otherwise. Optionally the product
of b and c is also added to signals.

Value

A matrix of num_points rows x num_records columns.

Examples

data <- kim_and_powers_model()

mode_matching Estimate cross-bicoherence’s empirical null distribution by a mode
matching method

Description

Estimate false discovery rate by fitting scaled chi-squared distribution as an empirical null of cross-
bicoherence with Schwartzman’s mode matching method.

Usage

mode_matching(xbc, t_max = NULL, d = 0.001)

10 three_channel_model

Arguments

xbc cross-bicoherence, returned from cross_bicoherence.
t_max the upper limit of interval

S0

, see the reference.
d the bin width of the tuning parameter.

References

Schwartzman, Armin. “Empirical Null and False Discovery Rate Inference for Exponential Fami-
lies.” Annals of Applied Statistics 2, no. 4 (December 2008): 1332–59. https://doi.org/10.1214/08-
AOAS184.

three_channel_model A three-channel model of quadratic phase coupling

Description

Simulate observations by a three-channel model of quadratic phase coupling.

Usage

three_channel_model(
f1,
f2,
f3,
num_samples = 256,
num_observations = 100,
input_freq = c(1.2, 0.7, 0.8),
noise_sd = 1

)

Arguments

f1 A function of period 2π for the first channel.
f2 A function of period 2π for the second channel.
f3 A function of period 2π for the third channel.
num_samples The number of sampling points in an observation.
num_observations

The number of observations.
input_freq The scaling factor for the frequencies of input periodic functions. It can be a

scalar or a vector of length three. If a scalar is given, the same frequency is used
for all of inputs.

noise_sd The standard deviation of a Gaussian noise perturbing samples. It can be a scalar
or a vector of length three. If a scalar is given, the same value is used for all of
noises. Giving 0 is possible and specifies no noise.

three_channel_model 11

Details

Given three periodic functions, this function generates a list of three data frames in which each
column represents a simulated observation at a channel. The phase is chosen at random from [0, 2π]
for each observation and each channel.

Value

A list of six data frames: i1, i2, i3, o1, o2, and o3. Each element has num_observations columns
and num_samples rows. i1, i2, and i3 are observations of input signals; o1, o2, and o3 are of
output.

Examples

sawtooth <- function(r) {
x <- r/(2*pi)
x - floor(x) - 0.5

}
data <- three_channel_model(cos, sin, sawtooth,

input_freq = c(0.2, 0.3, 0.4),
noise_sd = 0.9)

Index

bicoherence, 2
biperiodogram, 3
bispectrum, 4

cross_bicoherence, 6
cross_bispectrum, 7

kim_and_powers_model, 8

mode_matching, 9

p.adjust, 2
parallel::mclapply, 6, 7
parallel::mcmapply, 2, 4, 5

three_channel_model, 10

12

	bicoherence
	biperiodogram
	bispectrum
	cross_bicoherence
	cross_bispectrum
	kim_and_powers_model
	mode_matching
	three_channel_model
	Index

