Package: rhosa (via r-universe)

August 21, 2024
Title Higher-Order Spectral Analysis
Date 2024-05-17
Version 0.3.0

Description Higher-order spectra or polyspectra of time series, such
as bispectrum and bicoherence, have been investigated in
abundant literature and applied to problems of signal detection
in a wide range of fields. This package aims to provide a
simple API to estimate and analyze them. The current
implementation is based on Brillinger and Irizarry (1998)
<doi:10.1016/S0165-1684(97)00217-X> for estimating bispectrum
or bicoherence, Lii and Helland (1981)
<doi:10.1145/355958.355961> for cross-bispectrum, and Kim and
Powers (1979) <doi:10.1109/TPS.1979.4317207> for
cross-bicoherence.

License GPL-3
Encoding UTF-8

URL https://tabe.github.io/rhosa/

BugReports https://github.com/tabe/rhosa/issues
RoxygenNote 7.3.1

Imports parallel

Suggests ggplot2, knitr, rmarkdown, testthat (>= 2.1.0)
VignetteBuilder knitr

Repository https://tabe.r-universe.dev

RemoteUrl https://github.com/tabe/rhosa

RemoteRef HEAD

RemoteSha 3bd02ae4549a3465c6bad7{66e5546b8539¢cbc4s

https://doi.org/10.1016/S0165-1684(97)00217-X
https://doi.org/10.1145/355958.355961
https://doi.org/10.1109/TPS.1979.4317207
https://tabe.github.io/rhosa/
https://github.com/tabe/rhosa/issues

2 bicoherence

Contents
bicoherence e 2
biperiodogram L. e 3
bispectrumo 4
cross_bicoherence e 6
Cross_biSpectrum e e 7
kim_and_powers_model 8
mode_matching 9
three_channel_model e 10

Index 12

bicoherence Estimate bicoherence from given time series data.
Description

Estimate magnitude-squared bicoherence from given real- or complex-valued time series data.

Usage

bicoherence(
data,

window_function = NULL,

mc = FALSE,

mc_cores = getOption("mc.cores”, 2L),

alpha = 0.05,

p_adjust_method = "BH"

Arguments

data

window_function

mc

mc_cores

alpha
p_adjust_method

Given time series, as a data frame or matrix with which columns correspond to
sampled stretches.

A window function’s name for tapering. Defaults to NULL ("no tapering").

Currently the following window functions are available: Hamming window
("hamming"), Hann window ("hann"), and Blackman window ("blackman").

If TRUE, calculation is done in parallel computation. Defaults to FALSE.

The number of cores in use for parallel computation, passed parallel: :mcmapply ()
etc. as mc.cores.

The alpha level of the hypotesis test. Defaults to 0.05.

The correction method for p-values, given to p.adjust(). Defaults to "BH"
(Benjamini and Hochberg). No correction if a non-character is given.

biperiodogram 3

Value

A data frame including the following columns:

f1: The first elements of frequency pairs.
f2: The second elements of frequency pairs.
value: The estimate of magnitude-squared bicoherence at the respective frequency pair.

p_value: The (corrected, if requested) p-value for hypothesis testing under null hypothesis that
bicoherence is 0.

significance: TRUE if the null hypothesis of the above hypothesis test is rejected with given alpha
level.

References

Brillinger, D.R. and Irizarry, R.A. "An investigation of the second- and higher-order spectra of
music." Signal Processing, Volume 65, Issue 2, 30 March 1998, Pages 161-179.

Examples

f <- function(x) {
sin(2 * x) + sin(3 * x + 1) + sin(2 * x) * sin(3 * x + 1)

3
v <- sapply(seq_len(1280@), f) + rnorm(1280)
m <- matrix(v, nrow = 128)

bc1 <- bicoherence(m)
bc2 <- bicoherence(m, "hamming")
bc3 <- bicoherence(m, "hann”, mc = TRUE, mc_cores = 1L)

biperiodogram Calculate biperiodogram

Description

Calculate the biperiodogram of real-valued time series

Usage

biperiodogram(
X,
dft_given = FALSE,
mc = FALSE,
mc_cores = getOption("mc.cores”, 2L)

4 bispectrum

Arguments
X Given time series (or its DFT), as a data frame or matrix with which columns
correspond to sampled stretches
dft_given If TRUE, suppose that DFTs are given instead of time series data and skip the
fast fourier transform. Default: FALSE.
mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.
mc_cores The number of cores in use for parallel computation, passed parallel: :mcmapply ()
etc. as mc.cores.
Value

A list with names

f1: The first elements of frequency pairs.
f2: The second elements of frequency pairs.

value: The biperiodogram as a matrix. Each of its rows is for a frequency pair; its columns corre-
spond to stretches.

References

Hinich, M.J., 1994. Higher order cumulants and cumulant spectra. Circuits Systems and Signal
Process 13, 391-402. doi:10.1007/BF01183737

Examples

f <- function(x) {
sin(2 * x) + sin(3 * x + 1) + sin(2 * x) * sin(3 * x + 1)
3
v <- sapply(seq_len(1280@), f) + rnorm(1280)
m <- matrix(v, nrow = 128)
bp <- biperiodogram(m)

m2 <- stats::mvfft(m)
bp2 <- biperiodogram(m2, dft_given = TRUE)

bispectrum Estimate bispectrum from time series data.

Description

Estimate bispectrum from real- or complex-valued time series data.

bispectrum 5

Usage

bispectrum(
data,
window_function = NULL,
mc = FALSE,
mc_cores = getOption("mc.cores”, 2L)

)

Arguments
data Given time series, as a data frame or matrix with which columns correspond to
sampled stretches.

window_function
A window function’s name for tapering. Defaults to NULL ("no tapering").

Currently the following window functions are available: Hamming window
("hamming"), Hann window ("hann"), and Blackman window ("blackman").

mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.

mc_cores The number of cores in use for parallel computation, passed parallel: :mcmapply ()
etc. as mc.cores.

Value

A data frame including the following columns:

f1: The first elements of frequency pairs.
f2: The second elements of frequency pairs.

value: The estimated bispectrum at each frequency pair.

References

Brillinger, D.R. and Irizarry, R.A. "An investigation of the second- and higher-order spectra of
music." Signal Processing, Volume 65, Issue 2, 30 March 1998, Pages 161-179.

Examples

f <- function(x) {
sin(2 * x) + sin(3 * x + 1) + sin(2 * x) * sin(3 * x + 1)
3
v <- sapply(seq_len(1280), f) + rnorm(1280)
m <- matrix(v, nrow = 128)
bs1 <- bispectrum(m)
bs2 <- bispectrum(m, "hamming")
bs3 <- bispectrum(m, "blackman”, mc = TRUE, mc_cores = 1L)

cross_bicoherence

cross_bicoherence

Estimate cross-bicoherence from time series data.

Description

Estimate cross-bicoherence from three real-valued time series data.

Usage

cross_bicoherence(

X,
Y,
z=y,

dft_given
mc = FALSE,
mc_cores

Arguments

X

dft_given

mc

mc_cores

Value

FALSE,

getOption("mc.cores”, 2L)

Given 1st time series, as a data frame or matrix with which columns correspond
to sampled stretches.

Given 2nd time series, with the same dimension as X.

Optional 3rd time series, with the same dimension as x (and thus as y). If omit-
ted, y is used instead.

If TRUE, suppose that DFTs are given instead of time series data and skip the
fast fourier transform. Default: FALSE.

If TRUE, calculation is done in parallel computation. Defaults to FALSE.

The number of cores in use for parallel computation, passed parallel: :mclapply()
etc. as mc.cores.

A data frame including the following columns:

f1: The first elements of frequency pairs.

f2: The second elements of frequency pairs.

value: The estimated value of magnitude-squared cross-bicoherence at the respective frequency

pair.

References

Kim, Y.C., Powers, E.J., 1979. Digital Bispectral Analysis and Its Applications to Nonlinear Wave
Interactions. IEEE Trans. Plasma Sci. 7, 120-131. https://doi.org/10.1109/TPS.1979.4317207

cross_bispectrum

Examples

X <- seq_len(1280)

vl <- sapply(x, function(x) {sin(2 * x)}) + rnorm(1280)

v2 <- sapply(x, function(x) {sin(3 * x + 1)}) + rnorm(1280)

v3 <- sapply(x, function(x) {cos(2 * x) * cos(3 * x + 1)}) + rnorm(1280)
ml <- matrix(vl, nrow = 128)

m2 <- matrix(v2, nrow = 128)

m3 <- matrix(v3, nrow = 128)

xbc1 <- cross_bicoherence(m1, m2, m3)

dl <- stats::mvfft(ml)
d2 <- stats::mvfft(m2)
d3 <- stats::mvfft(m3)
xbc2 <- cross_bicoherence(d1, d2, d3, dft_given = TRUE)

xbc3 <- cross_bicoherence(dl, d2, d3, dft_given = TRUE, mc = TRUE, mc_cores = 1L)

cross_bispectrum Estimate cross-bispectrum from time series data.

Description

Estimate cross-bispectrum from three real-valued time series data.

Usage
cross_bispectrum(
X ’
Y,
zZ =Y,
dft_given = FALSE,
mc = FALSE,
mc_cores = getOption("mc.cores”, 2L)
)
Arguments
X Given lst time series, as a data frame or matrix with which columns correspond
to sampled stretches.
Given 2nd time series, with the same dimension as x.
z Optional 3rd time series, with the same dimension as x (and thus as y). If omit-
ted, y is used instead.
dft_given If TRUE, suppose that DFTs are given instead of time series data and skip the
fast fourier transform. Default: FALSE.
mc If TRUE, calculation is done in parallel computation. Defaults to FALSE.
mc_cores The number of cores in use for parallel computation, passed parallel: :mclapply()

etc. as mc. cores.

8 kim_and_powers_model

Value
A data frame including the following columns:

f1: The first elements of frequency pairs.
f2: The second elements of frequency pairs.
value: The estimated cross-bispectrum at each frequency pair.

References

K. S. Lii and K. N. Helland. 1981. Cross-Bispectrum Computation and Variance Estimation. ACM
Trans. Math. Softw. 7, 3 (September 1981), 284-294. DOILhttps://doi.org/10.1145/355958.355961

Examples

x <- seq_len(1280)

vl <- sapply(x, function(x) {sin(2 * x)}) + rnorm(1280)

v2 <- sapply(x, function(x) {sin(3 * x + 1)3}) + rnorm(1289)

v3 <- sapply(x, function(x) {cos(2 * x) * cos(3 * x + 1)}) + rnorm(1280)
ml <- matrix(vl, nrow = 128)

m2 <- matrix(v2, nrow = 128)

m3 <- matrix(v3, nrow = 128)

xbs1 <- cross_bispectrum(ml, m2, m3)

dl <- stats::mvfft(ml)
d2 <- stats::mvfft(m2)
d3 <- stats::mvfft(m3)
xbs2 <- cross_bispectrum(dl, d2, d3, dft_given

TRUE)

xbs3 <- cross_bispectrum(dil, d2, d3, dft_given = TRUE, mc = TRUE, mc_cores = 1L)

kim_and_powers_model A fest signal of the phase coherence between three oscillators

Description

Generate test signals which involve three oscillators described in Kim and Powers (1979).

Usage
kim_and_powers_model(
fbfN = 9.22,
fcfN = 0.375,
fdfN = fbfN + fcfN,

num_points = 128,
num_records = 64,
noise_sd = 0.1,
phase_coherence = TRUE,
product_term = FALSE

mode_matching 9

Arguments
fbfN b’s frequency divided by the Nyquist frequency; @.220 by default.
fcfN ¢’s frequency divided by the Nyquist frequency; @.375 by default.
fdfN d’s frequency divided by the Nyquist frequency; fbfN + fcfN by default.
num_points The number of sampling points in a record; 128 by default.
num_records The number of records; 64 by default.
noise_sd The standard deviation of a Gaussian noise perturbing samples; 0.1 (-20dB) by

default.
phase_coherence
If TRUE (default), the phase coherence in the signal d is on; otherwise off.

product_term If TRUE, the product of b and c is included in the model; FALSE by default.

Details

This function produces a list of numeric vectors; its each element represents a test signal in which
three oscillators b, ¢, and d are superimposed. The ratio of the frequency of b (f1) to the Nyquist
frequency is 0.220 and the ratio of the frequency of c (f2) to the Nyquist frequency is 0.375, by
default. The d’s frequency f3 is equal to f1 + f2 unless specified otherwise. Optionally the product
of b and c is also added to signals.

Value

A matrix of num_points rows X num_records columns.

Examples

data <- kim_and_powers_model ()

mode_matching Estimate cross-bicoherence’s empirical null distribution by a mode
matching method

Description
Estimate false discovery rate by fitting scaled chi-squared distribution as an empirical null of cross-
bicoherence with Schwartzman’s mode matching method.

Usage

mode_matching(xbc, t_max = NULL, d = 0.001)

10

three_channel model

Arguments
xbc cross-bicoherence, returned from cross_bicoherence.
t_max the upper limit of interval
So
, see the reference.
d the bin width of the tuning parameter.
References

Schwartzman, Armin. “Empirical Null and False Discovery Rate Inference for Exponential Fami-
lies.” Annals of Applied Statistics 2, no. 4 (December 2008): 1332-59. https://doi.org/10.1214/08-
AOAS184.

three_channel_model A three-channel model of quadratic phase coupling

Description

Simulate observations by a three-channel model of quadratic phase coupling.

Usage
th

ree_channel_model(

f1,

f2,

f3,

num_samples = 256,
num_observations = 100,
input_freq = c(1.2, 0.7, 0.8),
noise_sd = 1

)

Arguments
f1 A function of period 27 for the first channel.
f2 A function of period 27 for the second channel.
f3 A function of period 27 for the third channel.
num_samples The number of sampling points in an observation.

num_observations

in

no

The number of observations.

put_freq The scaling factor for the frequencies of input periodic functions. It can be a
scalar or a vector of length three. If a scalar is given, the same frequency is used
for all of inputs.

ise_sd The standard deviation of a Gaussian noise perturbing samples. It can be a scalar

or a vector of length three. If a scalar is given, the same value is used for all of
noises. Giving 0 is possible and specifies no noise.

three_channel model 11

Details

Given three periodic functions, this function generates a list of three data frames in which each
column represents a simulated observation at a channel. The phase is chosen at random from [0, 27]
for each observation and each channel.

Value

A list of six data frames: i1, 12, i3, o1, 02, and 03. Each element has num_observations columns
and num_samples rows. i1, i2, and i3 are observations of input signals; o1, 02, and 03 are of
output.

Examples

sawtooth <- function(r) {
X <= r/(2*pi)
x = floor(x) - 0.5
3
data <- three_channel_model(cos, sin, sawtooth,
input_freq = c(0.2, 0.3, 0.4),
noise_sd = 0.9)

Index

bicoherence, 2
biperiodogram, 3
bispectrum, 4

cross_bicoherence, 6
cross_bispectrum, 7

kim_and_powers_model, 8
mode_matching, 9
p.adjust, 2
parallel::mclapply, 6, 7
parallel: :mcmapply, 2,4, 5

three_channel_model, 10

12

	bicoherence
	biperiodogram
	bispectrum
	cross_bicoherence
	cross_bispectrum
	kim_and_powers_model
	mode_matching
	three_channel_model
	Index

